1. datapackage-js
A library for working with Data Packages.
Version v1.0 includes various important changes. Please read a migration guide.
1.1. Features
Package
class for working with data packagesResource
class for working with data resourcesProfile
class for working with profilesvalidate
function for validating data package descriptorsinfer
function for inferring data package descriptors
1.2. Getting Started
1.2.1. Installation
The package use semantic versioning. It means that major versions could include breaking changes. It's highly recommended to specify datapackage
version range in your package.json
file e.g. datapackage: ^1.0
which will be added by default by npm install --save
.
NPM
$ npm install datapackage@latest # v1.0
$ npm install datapackage # v0.8
CDN
<script src="//unpkg.com/datapackage/dist/datapackage.min.js"></script>
1.2.2. Examples
Code examples in this readme requires Node v8.3+ or proper modern browser . Also you have to wrap code into async function if there is await keyword used. You could see even more example in examples directory.
const {Package} = require('datapackage')
const descriptor = {
resources: [
{
name: 'example',
profile: 'tabular-data-resource',
data: [
['height', 'age', 'name'],
['180', '18', 'Tony'],
['192', '32', 'Jacob'],
],
schema: {
fields: [
{name: 'height', type: 'integer'},
{name: 'age', type: 'integer'},
{name: 'name', type: 'string'},
],
}
}
]
}
const dataPackage = await Package.load(descriptor)
const resource = dataPackage.getResource('example')
await resource.read() // [[180, 18, 'Tony'], [192, 32, 'Jacob']]
1.3. Documentation
1.3.1. Package
A class for working with data packages. It provides various capabilities like loading local or remote data package, inferring a data package descriptor, saving a data package descriptor and many more.
Consider we have some local csv files in a data
directory. Let's create a data package based on this data using a Package
class:
data/cities.csv
city,location
london,"51.50,-0.11"
paris,"48.85,2.30"
rome,"41.89,12.51"
data/population.csv
city,year,population
london,2017,8780000
paris,2017,2240000
rome,2017,2860000
First we create a blank data package::
const dataPackage = await Package.load()
Now we're ready to infer a data package descriptor based on data files we have. Because we have two csv files we use glob pattern **/*.csv
:
await dataPackage.infer('**/*.csv')
dataPackage.descriptor
//{ profile: 'tabular-data-package',
// resources:
// [ { path: 'data/cities.csv',
// profile: 'tabular-data-resource',
// encoding: 'utf-8',
// name: 'cities',
// format: 'csv',
// mediatype: 'text/csv',
// schema: [Object] },
// { path: 'data/population.csv',
// profile: 'tabular-data-resource',
// encoding: 'utf-8',
// name: 'population',
// format: 'csv',
// mediatype: 'text/csv',
// schema: [Object] } ] }
An infer
method has found all our files and inspected it to extract useful metadata like profile, encoding, format, Table Schema etc. Let's tweak it a little bit:
dataPackage.descriptor.resources[1].schema.fields[1].type = 'year'
dataPackage.commit()
dataPackage.valid // true
Because our resources are tabular we could read it as a tabular data:
await dataPackage.getResource('population').read({keyed: true})
//[ { city: 'london', year: 2017, population: 8780000 },
// { city: 'paris', year: 2017, population: 2240000 },
// { city: 'rome', year: 2017, population: 2860000 } ]
Let's save our descriptor on the disk. After it we could update our datapackage.json
as we want, make some changes etc:
await dataPackage.save('datapackage.json')
To continue the work with the data package we just load it again but this time using local datapackage.json
:
const dataPackage = await Package.load('datapackage.json')
// Continue the work
It was onle basic introduction to the Package
class. To learn more let's take a look on Package
class API reference.
async Package.load(descriptor, {basePath, strict=false})
Factory method to instantiate Package
class. This method is async and it should be used with await keyword or as a Promise
.
descriptor (String/Object)
- data package descriptor as local path, url or object. If ththe path has azip
file extension it will be unzipped to the temp directory first.basePath (String)
- base path for all relative pathsstrict (Boolean)
- strict flag to alter validation behavior. Setting it totrue
leads to throwing errors on any operation with invalid descriptor(errors.DataPackageError)
- raises error if something goes wrong(Package)
- returns data package class instance
package.valid
(Boolean)
- returns validation status. It always true in strict mode.
package.errors
(Error[])
- returns validation errors. It always empty in strict mode.
package.profile
(Profile)
- returns an instance ofProfile
class (see below).
package.descriptor
(Object)
- returns data package descriptor
package.resources
(Resource[])
- returns an array ofResource
instances (see below).
package.resourceNames
(String[])
- returns an array of resource names.
package.getResource(name)
Get data package resource by name.
name (String)
- data resource name(Resource/null)
- returnsResource
instances or null if not found
package.addResource(descriptor)
Add new resource to data package. The data package descriptor will be validated with newly added resource descriptor.
descriptor (Object)
- data resource descriptor(errors.DataPackageError)
- raises error if something goes wrong(Resource/null)
- returns addedResource
instance or null if not added
package.removeResource(name)
Remove data package resource by name. The data package descriptor will be validated after resource descriptor removal.
name (String)
- data resource name(errors.DataPackageError)
- raises error if something goes wrong(Resource/null)
- returns removedResource
instances or null if not found
async package.infer(pattern=false)
Infer a data package metadata. If pattern
is not provided only existent resources will be inferred (added metadata like encoding, profile etc). If pattern
is provided new resoures with file names mathing the pattern will be added and inferred. It commits changes to data package instance.
pattern (String)
- glob pattern for new resources(Object)
- returns data package descriptor
package.commit({strict})
Update data package instance if there are in-place changes in the descriptor.
strict (Boolean)
- alterstrict
mode for further work(errors.DataPackageError)
- raises error if something goes wrong(Boolean)
- returns true on success and false if not modified
const dataPackage = await Package.load({
name: 'package',
resources: [{name: 'resource', data: ['data']}]
})
dataPackage.name // package
dataPackage.descriptor.name = 'renamed-package'
dataPackage.name // package
dataPackage.commit()
dataPackage.name // renamed-package
async package.save(target)
Save data package to target destination. If target path has a zip file extension the package will be zipped and saved entirely. If it has a json file extension only the descriptor will be saved.
target (String)
- path where to save a data package(errors.DataPackageError)
- raises error if something goes wrong(Boolean)
- returns true on success
1.3.2. Resource
A class for working with data resources. You can read or iterate tabular resources using the iter/read
methods and all resource as bytes using rowIter/rowRead
methods.
Consider we have some local csv file. It could be inline data or remote link - all supported by Resource
class (except local files for in-brower usage of course). But say it's data.csv
for now:
city,location
london,"51.50,-0.11"
paris,"48.85,2.30"
rome,N/A
Let's create and read a resource. We use static Resource.load
method instantiate a resource. Because resource is tabular we could use resource.read
method with a keyed
option to get an array of keyed rows:
const resource = await Resource.load({path: 'data.csv'})
resource.tabular // true
resource.headers // ['city', 'location']
await resource.read({keyed: true})
// [
// {city: 'london', location: '51.50,-0.11'},
// {city: 'paris', location: '48.85,2.30'},
// {city: 'rome', location: 'N/A'},
// ]
As we could see our locations are just a strings. But it should be geopoints. Also Rome's location is not available but it's also just a N/A
string instead of JavaScript null
. First we have to infer resource metadata:
await resource.infer()
resource.descriptor
//{ path: 'data.csv',
// profile: 'tabular-data-resource',
// encoding: 'utf-8',
// name: 'data',
// format: 'csv',
// mediatype: 'text/csv',
// schema: { fields: [ [Object], [Object] ], missingValues: [ '' ] } }
await resource.read({keyed: true})
// Fails with a data validation error
Let's fix not available location. There is a missingValues
property in Table Schema specification. As a first try we set missingValues
to N/A
in resource.descriptor.schema
. Resource descriptor could be changed in-place but all changes should be commited by resource.commit()
:
resource.descriptor.schema.missingValues = 'N/A'
resource.commit()
resource.valid // false
resource.errors
// Error: Descriptor validation error:
// Invalid type: string (expected array)
// at "/missingValues" in descriptor and
// at "/properties/missingValues/type" in profile
As a good citiziens we've decided to check out recource descriptor validity. And it's not valid! We should use an array for missingValues
property. Also don't forget to have an empty string as a missing value:
resource.descriptor.schema['missingValues'] = ['', 'N/A']
resource.commit()
resource.valid // true
All good. It looks like we're ready to read our data again:
await resource.read({keyed: true})
// [
// {city: 'london', location: [51.50,-0.11]},
// {city: 'paris', location: [48.85,2.30]},
// {city: 'rome', location: null},
// ]
Now we see that:
- locations are arrays with numeric lattide and longitude
- Rome's location is a native JavaScript
null
And because there are no errors on data reading we could be sure that our data is valid againt our schema. Let's save our resource descriptor:
await resource.save('dataresource.json')
Let's check newly-crated dataresource.json
. It contains path to our data file, inferred metadata and our missingValues
tweak:
{
"path": "data.csv",
"profile": "tabular-data-resource",
"encoding": "utf-8",
"name": "data",
"format": "csv",
"mediatype": "text/csv",
"schema": {
"fields": [
{
"name": "city",
"type": "string",
"format": "default"
},
{
"name": "location",
"type": "geopoint",
"format": "default"
}
],
"missingValues": [
"",
"N/A"
]
}
}
If we decide to improve it even more we could update the dataresource.json
file and then open it again. But this time let's read our resoure as a byte stream:
const resource = await Resource.load('dataresource.json')
const stream = await resource.rawIter({stream: true})
stream.on('data', (data) => {
// handle data chunk as a Buffer
})
It was onle basic introduction to the Resource
class. To learn more let's take a look on Resource
class API reference.
async Resource.load(descriptor, {basePath, strict=false})
Factory method to instantiate Resource
class. This method is async and it should be used with await keyword or as a Promise
.
descriptor (String/Object)
- data resource descriptor as local path, url or objectbasePath (String)
- base path for all relative pathsstrict (Boolean)
- strict flag to alter validation behavior. Setting it totrue
leads to throwing errors on any operation with invalid descriptor(errors.DataPackageError)
- raises error if something goes wrong(Resource)
- returns resource class instance
resource.valid
(Boolean)
- returns validation status. It always true in strict mode.
resource.errors
(Error[])
- returns validation errors. It always empty in strict mode.
resource.profile
(Profile)
- returns an instance ofProfile
class (see below).
resource.descriptor
- (Object) - returns resource descriptor
resource.name
(String)
- returns resource name
resource.inline
(Boolean)
- returns true if resource is inline
resource.local
(Boolean)
- returns true if resource is local
resource.remote
(Boolean)
- returns true if resource is remote
resource.multipart
(Boolean)
- returns true if resource is multipart
resource.tabular
(Boolean)
- returns true if resource is tabular
resource.source
(Array/String)
- returnsdata
orpath
property
Combination of resource.source
and resource.inline/local/remote/multipart
provides predictable interface to work with resource data.
resource.headers
Only for tabular resources
(String[])
- returns data source headers
resource.schema
Only for tabular resources
It returns Schema
instance to interact with data schema. Read API documentation - tableschema.Schema.
(tableschema.Schema)
- returns schema class instance
async resource.iter({keyed, extended, cast=true, relations=false, stream=false})
Only for tabular resources
Iter through the table data and emits rows cast based on table schema (async for loop). With a stream
flag instead of async iterator a Node stream will be returned. Data casting could be disabled.
keyed (Boolean)
- iter keyed rowsextended (Boolean)
- iter extended rowscast (Boolean)
- disable data casting if falserelations (Boolean)
- if true foreign key fields will be checked and resolved to its referencesstream (Boolean)
- return Node Readable Stream of table rows(errors.DataPackageError)
- raises any error occured in this process(AsyncIterator/Stream)
- async iterator/stream of rows:[value1, value2]
- base{header1: value1, header2: value2}
- keyed[rowNumber, [header1, header2], [value1, value2]]
- extended
async resource.read({keyed, extended, cast=true, relations=false, limit})
Only for tabular resources
Read the whole table and returns as array of rows. Count of rows could be limited.
keyed (Boolean)
- flag to emit keyed rowsextended (Boolean)
- flag to emit extended rowscast (Boolean)
- flag to disable data casting if falserelations (Boolean)
- if true foreign key fields will be checked and resolved to its referenceslimit (Number)
- integer limit of rows to return(errors.DataPackageError)
- raises any error occured in this process(Array[])
- returns array of rows (seetable.iter
)
resource.checkRelations()
Only for tabular resources
It checks foreign keys and raises an exception if there are integrity issues.
(errors.DataPackageError)
- raises if there are integrity issues(Boolean)
- returns True if no issues
await resource.rawIter({stream=false})
Iterate over data chunks as bytes. If stream
is true Node Stream will be returned.
stream (Boolean)
- Node Stream will be returned(Iterator/Stream)
- returns Iterator/Stream
await resource.rawRead()
Returns resource data as bytes.
- (Buffer) - returns Buffer with resource data
async resource.infer()
Infer resource metadata like name, format, mediatype, encoding, schema and profile. It commits this changes into resource instance.
(Object)
- returns resource descriptor
resource.commit({strict})
Update resource instance if there are in-place changes in the descriptor.
strict (Boolean)
- alterstrict
mode for further work(errors.DataPackageError)
- raises error if something goes wrong(Boolean)
- returns true on success and false if not modified
async resource.save(target)
For now only descriptor will be saved.
Save resource to target destination.
target (String)
- path where to save a resource(errors.DataPackageError)
- raises error if something goes wrong(Boolean)
- returns true on success
1.3.3. Profile
A component to represent JSON Schema profile from Profiles Registry:
await profile = Profile.load('data-package')
profile.name // data-package
profile.jsonschema // JSON Schema contents
const {valid, errors} = profile.validate(descriptor)
for (const error of errors) {
// inspect Error objects
}
async Profile.load(profile)
Factory method to instantiate Profile
class. This method is async and it should be used with await keyword or as a Promise
.
profile (String)
- profile name in registry or URL to JSON Schema(errors.DataPackageError)
- raises error if something goes wrong(Profile)
- returns profile class instance
profile.name
(String/null)
- returns profile name if available
profile.jsonschema
(Object)
- returns profile JSON Schema contents
profile.validate(descriptor)
Validate a data package descriptor
against the profile.
descriptor (Object)
- retrieved and dereferenced data package descriptor(Object)
- returns a{valid, errors}
object
1.3.4. Validate
A standalone function to validate a data package descriptor:
const {valid, errors} = await validate({name: 'Invalid Datapackage'})
for (const error of errors) {
// inspect Error objects
}
async validate(descriptor)
This function is async so it has to be used with await
keyword or as a Promise
.
descriptor (String/Object)
- data package descriptor (local/remote path or object)(Object)
- returns a{valid, errors}
object
1.3.5. Infer
A standalone function to infer a data package descriptor.
const descriptor = await infer('**/*.csv')
//{ profile: 'tabular-data-resource',
// resources:
// [ { path: 'data/cities.csv',
// profile: 'tabular-data-resource',
// encoding: 'utf-8',
// name: 'cities',
// format: 'csv',
// mediatype: 'text/csv',
// schema: [Object] },
// { path: 'data/population.csv',
// profile: 'tabular-data-resource',
// encoding: 'utf-8',
// name: 'population',
// format: 'csv',
// mediatype: 'text/csv',
// schema: [Object] } ] }
async infer(pattern, {basePath})
This function is async so it has to be used with await
keyword or as a Promise
.
pattern (String)
- glob file pattern(Object)
- returns data package descriptor
1.3.6. Foreign Keys
The library supports foreign keys described in the Table Schema specification. It means if your data package descriptor use resources[].schema.foreignKeys
property for some resources a data integrity will be checked on reading operations.
Consider we have a data package:
const DESCRIPTOR = {
'resources': [
{
'name': 'teams',
'data': [
['id', 'name', 'city'],
['1', 'Arsenal', 'London'],
['2', 'Real', 'Madrid'],
['3', 'Bayern', 'Munich'],
],
'schema': {
'fields': [
{'name': 'id', 'type': 'integer'},
{'name': 'name', 'type': 'string'},
{'name': 'city', 'type': 'string'},
],
'foreignKeys': [
{
'fields': 'city',
'reference': {'resource': 'cities', 'fields': 'name'},
},
],
},
}, {
'name': 'cities',
'data': [
['name', 'country'],
['London', 'England'],
['Madrid', 'Spain'],
],
},
],
}
Let's check relations for a teams
resource:
const {Package} = require('datapackage')
const package = await Package.load(DESCRIPTOR)
teams = package.getResource('teams')
await teams.checkRelations()
// tableschema.exceptions.RelationError: Foreign key "['city']" violation in row "4"
As we could see there is a foreign key violation. That's because our lookup table cities
doesn't have a city of Munich
but we have a team from there. We need to fix it in cities
resource:
package.descriptor['resources'][1]['data'].push(['Munich', 'Germany'])
package.commit()
teams = package.getResource('teams')
await teams.checkRelations()
// True
Fixed! But not only a check operation is available. We could use relations
argument for resource.iter/read
methods to dereference a resource relations:
await teams.read({keyed: true, relations: true})
//[{'id': 1, 'name': 'Arsenal', 'city': {'name': 'London', 'country': 'England}},
// {'id': 2, 'name': 'Real', 'city': {'name': 'Madrid', 'country': 'Spain}},
// {'id': 3, 'name': 'Bayern', 'city': {'name': 'Munich', 'country': 'Germany}}]
Instead of plain city name we've got a dictionary containing a city data. These resource.iter/read
methods will fail with the same as resource.check_relations
error if there is an integrity issue. But only if relations: true
flag is passed.
1.3.7. Errors
errors.DataPackageError
Base class for the all library errors. If there are more than one error you could get an additional information from the error object:
try {
// some lib action
} catch (error) {
console.log(error) // you have N cast errors (see error.errors)
if (error.multiple) {
for (const error of error.errors) {
console.log(error) // cast error M is ...
}
}
}
1.4. Contributing
The project follows the Open Knowledge International coding standards. There are common commands to work with the project:
$ npm install
$ npm run test
$ npm run build
1.5. Changelog
Here described only breaking and the most important changes. The full changelog and documentation for all released versions could be found in nicely formatted commit history.
1.5.1. v1.0
This version includes various big changes. A migration guide is under development and will be published here.
1.5.2. v0.8
First stable version of the library.